
  

  

Abstract— Neurally medicated syncope (NMS) patients 
suffer from sudden loss of consciousness, which is associated 
with a high rate of falls and hospitalization. NMS negatively 
impacts a subject’s quality of life and is a growing cost issue for 
the healthcare systems in particular since mainly elderly are at 
risk of NMS in our aging societies.  

In the present paper we present an algorithm for prediction 
of NMS, which is based on the analysis of the 
electrocardiogram (ECG) and photoplethysmogram (PPG) 
signals. Several parameters extracted from ECG and PPG, 
which have been associated in previous works with reflectory 
mechanisms underlying NMS, were combined in a single 
algorithm to detect impending syncope. The proposed 
algorithm was validated in 43 subjects using a 3-way data split 
scheme and achieved the following performance: sensitivity 
(SE) - 100%; specificity (SP) - 92%; positive predictive value 
(PPV) - 85%; false positive rate per hour (FPRh) - 0.146h-1 
and; average prediction time (aPTime) - 217.58s. 

I. INTRODUCTION 
Syncope is a transient and self-limited loss of 

consciousness, resulting from a transient global cerebral 
hypoperfusion and is characterized by a rapid onset, short 
duration and spontaneous complete recovery [1]. Also 
referred to as vasovagal and neurocardiogenic syncope, NMS 
belongs to a broader group of syncope known as reflex 
syncope, responsible for 21% of syncope episodes [1]. 

In the latest Framingham Study [2] involving 7814 
participants between 20 and 96 years old it was reported an 
incidence rate of 6.2 per 1000 person-years. Moreover, it was 
shown to increase with age, being the sharpest rise within the 
70-79 and above 80 years old populations (11.1 and 19.5 per 
1000 person-years, respectively. [2, 3]. Although the main 
causes of syncope are generally benign, it is associated with 
frequent hospitalizations and accounts for 1-3% of all 
emergency department (ED) visits, as well as 1-6% of all 
hospital admissions in general [2, 4]. Moreover, in U.S. 
approximately 4% of patients discharged from the ED with 
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syncope experience severe adverse events within 72 hours, 
like readmission or death [4].   

The recurrence of syncope episodes gains special 
emphasis in elderly populations, where morbidity is 
particularly high. Fear of falling often leads to reduced 
physical and social activity, which is associated with 
increased mental decline, incidence of medical conditions 
and subsequent institutionalization [1]. 

The main advances in syncope treatment and prevention 
focus on lifestyle modifications, which include the education 
of patients regarding the awareness and avoidance of triggers, 
the early recognition of prodromal symptoms, and 
performance of counter measures to abort the syncope 
episode [1]. Thus, the development of a non-invasive and 
non-intrusive, as well as cost-efficient personal p-health 
system to alert patients in case of an impending syncope 
might: 1) provide an opportunity for the patient to perform 
early counter-maneuvers and avoid or delay syncope, as well 
as 2) help in diagnostics of underlying pathophysiological 
mechanisms with better personalized treatment options. 

Orthostatic intolerance is thought to be one of the most 
common triggers of reflex syncope [5]. Investigators believe 
that the abrupt and excessive amount of venous blood 
pooling during standing posture is responsible for a decrease 
in the venous blood return to the heart resulting in more 
vigorously ventricle contractions and excessive stimulation of 
the ventricular mechanoreceptors. As a result, a 
“paradoxical” withdrawal in sympathetic tone can occur i.e. 
cardioinhibition and vasodepression. This process is 
associated with a decrease in blood pressure and finally 
syncope [6]. Although the increase in parasympathetic 
activity (cardioinhibition) is commonly observed during 
NMS, hypotension due to vasodepression is considered as the 
primary mechanism leading to the loss of consciousness [7].  

Several algorithms based on analysis of changes in heart 
rate and continuously measured systolic blood pressure 
(SBP) have been proposed to predict syncope events [8, 9]. 
However, current non-invasive blood pressure monitoring 
systems have several disadvantages. Most prominently their 
application is restricted by bulky and expensive hardware, as 
well as complicated handling with the need for frequent 
calibrations [10]. These limitations become critical in 
unsupervised environments such as at home or in ambulatory 
scenarios, where low cost and easy-to-use devices are 
essential. Recently, several authors focused on the analysis of 
the pulse arrival time (PAT) as a surrogate for SBP changes 
and consequently prediction of syncope [11-13]. In our 
previous work [13] we established and validated a method for 
syncope prediction using PAT. Additionally, in [14] we 
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evaluated the changes in several parameters, such as heart 
rate (HR) and left ventricular ejection time (LVET), in order 
to characterize the possible mechanisms underlying of NMS 
(e.g. chronotropic and inotropic changes).  

In the present paper, we propose an algorithm for 
prediction of NMS by analyzing changes of several 
cardiovascular parameters that we previously suggested to 
characterize the chronotropic (HR), inotropic (LVET), 
vascular tone and blood pressure (PAT, stiffness index – SI – 
and reflection index - RI, respectively) changes. These 
parameters were extracted from the joint analysis of the 
electrocardiogram (ECG) and photoplethysmogram (PPG), 
which can be easily acquired with state-of-the-art equipment. 

The remainder of the paper is organized as follows. In 
section II the data collection protocol and measurement 
protocol are described. The parameter extraction and syncope 
prediction algorithm are presented in section III. The main 
results are presented and discussed in section IV. In section V 
the main conclusions are presented. 

II. CLINICAL STUDY 

A. Study design and HUTT protocol 
Data were acquired during scheduled diagnostic head-up 

tilt table tests (HUTT) from 55 patients with unexplained 
syncope. All patients gave written informed consent to 
participate in this study (NCT01262508).  

HUTT consisted of four phases: 1) a initial resting period 
of at least 15 min in supine position; 2) a passive standing 
period of 20 min at a position of 70º 3) an additional standing 
period of 15 min, if no syncope occurred in (2), with 
sublingual administration of min 400 µg of glycerol trinitrate 
(GTN); 4) tilting back to the supine position. If syncope 
occurred at any time during the protocol the patient was 
brought back to the supine position immediately for recovery. 
Any prodromal symptoms such as dizziness, sweat, tremor, 
etc. during testing were documented. 

Test outcome was classified as positive (po) or negative 
(ne) according to the guidelines of the European Society of 
Cardiology [2]. A positive result is characterized by 
occurrence of syncope or pre-syncope with the presence of 
bradycardia, hypotension, or both.  

Data of 12 patients had to be removed due to BP 
regulation failures not caused by syncope, presences of 
arrhythmias and poor data quality in BP and PPG signals. 
The biometric characteristics of the 43 patients involved in 
the present study are summarized in Table I. 

B. Experimental setup 
ECG and PPG signals were acquired with a Philips MP50 

patient monitor and stored on a laptop. Blood pressure was 

continuously measured (beat-to-beat) using a “Taskforce 
Monitor” [12]. Data coming from both systems were aligned 
in time via the synchronously detected ECG signals.  Details 
of the acquisition system can be found in [14].  

III. METHODS 
The proposed algorithm consists of three steps: 1) 

Parameter extraction and post-processing; 2) Feature 
evaluation; 3) Syncope onset detection. 

A. Parameter extraction and post-processing 
Chronotropic and inotropic changes were assessed via HR 

and LVET.  The HR was derived from the ECG and was 
defined as the time span between consecutive R-peaks. These 
peaks were detected using an algorithm similar to the 
approach discussed in [15]. The LVET was assessed from the 
PPG analysis using the algorithm proposed in [16]. 

To assess vascular and blood pressure changes, three 
highly pressure dependent parameters were also extracted 
[11-13, 17]. The SI is associated with the velocity of a pulse 
wave in large arteries [18] and correlates with pulse pressure 
[17]. In this work it was defined as time span between the 
forward (T1) and reflected waves (T2). The RI, associated 
with small artery stiffness [18], was defined as the ratio 
between the amplitudes of both waves (P1 and P2), as 
indicated in Figure 1. Finally, PAT80% was defined as the 
time span between the ECG R-peak and the moment in time 
corresponding to 80% of the PPG pulse amplitude after its 
onset, which is known to correlate well with a decreasing BP 
in NMS [11]. Algorithms to detect characteristic points in the 
PPG are described in [16]. 

It is well known that the PPG signal is prone to several 
sources of error (e.g. motion artifacts), which can be a serious 
obstacle in the reliable extraction of the derived parameters. 
In the current study, no special emphasis was given to the 
artifact removal problematic. Instead, an approach similar to 
[19] was used to remove outliers, where a boxplot analysis 
over a sliding window was adopted. However, here the 
sliding window is applied to the difference between each 
parameter and its correspondent smoothed version calculated 
using a 121 beat moving median filter. The rationale behind 
this approach is the detection of sporadic values that greatly 
differ from the parameter main trend. 

Finally, parameter time series were linearly interpolated 
at a 2Hz frequency, which according to [13] is well above the 

TABLE I. PATIENT CHARACTERISTICS (AVG± STD) 

 Tilt positive   
(n=21) 

Tilt negative 
(n=22) 

Age [y] 
Weight [kg] 
BMI [kg/m2] 
Male/female 
GTN yes/no 

57±18 
86±15 

27.1±4.6 
13/8 
15/6 

63±17 
74±13 
26±5 
10/12 
15/7 

 

 
Figure 1. Representation of the PPG beat morphology and the extracted 
characteristic points used to assess stiffness and reflection indexes (SI and 
RI, respectively). 
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required minimal sample frequency. Additionally a 
Butterworth low-pass filter with a 0.05Hz cutoff frequency 
was used to reduce high frequency noise. 

B. Feature evaluation and selection 
To develop a robust prediction algorithm which is 

independent of a patient’s specific characteristics the 
extracted parameters were normalized leading to a set of ten 
features in total, which are summarized in Table II. The first 
five features were defined as: 

𝐹𝑇! 𝑡 = 𝑛𝑃𝑅! =
𝑃𝑅!(𝑡)
𝑃𝑅𝑟𝑒𝑓!

, 𝑖 = 1,… ,5 (1) 

where 𝐹𝑇! is the ith feature, 𝑃𝑅! is the ith parameter, 𝑃𝑅𝑟𝑒𝑓! is 
the average of each parameter during the second minute  
(reference window) after the patient was tilted to the upright 
position and t is the time instant. By selecting the reference 
window to be on the second minute, we ensure that the 
patient achieves orthostatic stabilization, which typically 
occurs within less than 1 minute [6].  

Additionally, the normalized changes of the extracted 
parameters during the last 1.5 minutes - the minimum 
response time according to [13] - were also taken into 
account as: 

𝐹𝑇!!! 𝑡 = 𝑛∆𝑃𝑅! =
𝑃𝑅! 𝑡 − 𝑃𝑅!(𝑡 − 1.5𝑚𝑖𝑛)

𝑃𝑅𝑟𝑒𝑓!
  

, 𝑖 = 1,… ,5 
(2) 

The selection of the most appropriate features for syncope 
prediction was performed using the approach proposed in 
[20], where the features are selected based on a score metric 
(FSS) combining their relevance and redundancy, presented 
in eq. (3) . The relevance of each feature was assessed by the 
area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve, while its redundancy was 
assessed by the spearman’s rank correlation coefficient 
(RCC).  

𝐹𝑆𝑆! = 𝐴𝑈𝐶 𝐹𝑇! −
𝑅𝐶𝐶(𝐹𝑇! ,𝐹𝑇!)!"!∈!

𝑆
 (3) 

where 𝑆 is the subset of selected features at each iteration and 
𝑆  its cardinality. In sum, seven features were selected, 

which are presented in Table III. 

C. Syncope onset detection algorithm 
From the analysis of the extracted features instants before 

the onset of syncope, one observed the presence of significant 
changes in the majority of the tilt positive patients (Figure 2). 
The chronotropic and inotropic variations were observed in 
the substantial decrease of nΔHR and increase in nΔLVET. 
Moreover, significant blood pressure drop was observed by 
the substantial increase of nSI, nPAT, nΔSI and nΔPAT, and 
decrease of nRI.  

In order to illustrate how the features vary in two patients 
(with/without NMS) during a HUTT, the first three principal 
components of a principal component analysis (PCA) are 
presented in Figure 3. In general, for HUTT po patient, the 
trajectory evolves away from the point corresponding to the 
orthostatic stable state, just before the onset of syncope. An 
example of this behavior is presented in Figure 3 (left) for a 
69-year-old patient with manifested syncope and GTN 
provocation. Contrarily, on HUTT ne patients the trajectory 
remains closer to the orthostatic stable state as shown in 
Figure 3 (right) for a 78-year-old patient with no syncope 
after GTN administration.  

Obviously distance metrics might be used as measure of a 
stable state or being at risk for an impending event. 
Therefore, the Minkowski distance was used to capture 
changes relative to a stable orthostatic reference at the 
beginning of the standing period (FTref), as calculated in (eq. 
(4)). The selection of the Minkowski distance order was 
performed using ROC analysis in a 5-fold cross-validation 
scheme. To eliminate feature variations that are not 
associated with NMS, and therefore might negatively affect 
the FD measure, nSI and nPAT values above unit and nRI 

 
Figure 2. HUTT of a 50-year-old patient with syncope onset during GTN 
provocation. Representation of the seven most discriminant features 
assessed from the extracted parameters, SBP and HUTT sequence. BPf 
window corresponds time from the BP fall onset to the syncope episode. 

TABLE II. CORRESPONDENCE BETWEEN PARAMETERS/FEATURES 
INDEXES AND NAMES 

Parameter 
name 

Parameter 
index 

Feature name 
(1st set) 

Feature name 
(2nd set) 

HR 𝑃𝑅! 𝑛𝐻𝑅 𝑛∆𝐻𝑅 
LVET 𝑃𝑅! 𝑛𝐿𝑉𝐸𝑇 𝑛∆𝐿𝑉𝐸𝑇 

SI 𝑃𝑅! 𝑛𝑆𝐼 n∆𝑆𝐼 
RI 𝑃𝑅! 𝑛𝑅𝐼 𝑛∆𝑅𝐼 

PAT 𝑃𝑅! 𝑛𝑃𝐴𝑇 𝑛∆𝑃𝐴𝑇 
 

 
Figure 3. Illustration of the trajectory of the three principal components 
extracted from the most discriminative features, during HUTT procedure. 
Left: 69-year-old patient with manifested syncope and GTN provocation. 
Right: 78-year-old patient with no syncope and GTN provocation. 
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values below unit were set to one. Additionally, nΔHR values 
below zero and nΔLVET, nΔSI and nΔPAT values above zero 
were set to zero. 

𝐹𝐷 𝑡 =    𝐹𝑇! 𝑡 − 𝐹𝑇𝑟𝑒𝑓!

!

!!!

!/!

, 𝑝 = 0.707 (4) 

where 𝐹𝐷 𝑡  is the Minkowski distance at the time instant t. 
Impending NMS was detected when FD crosses a 

predefined optimal threshold (THO=3.256). The SBP, FD and 
HUTT sequence are presented in Figure 4 for an example 
case of 69-year-old patient. 

IV. RESULTS AND DISCUSSION 
To evaluate the performance of the proposed algorithm a 

three-way data split approach was adopted. The dataset was 
randomly partitioned into a training/validation (30 patients) 
and test (13 patients) subsets. The train/validation subset was 
used to select the best features, evaluate the performance of 
the proposed algorithm and select the optimal threshold for 
syncope prediction. In this phase, the algorithm performance 
and optimal threshold were evaluated using a 5-fold cross 
validation (5f-CV) approach (repeated 20 times). The optimal 
threshold was defined as the average of the thresholds 
evaluated at each fold/iterations. The test subset was used to 
validate the final solution, and test the real algorithms’ 
performance. 

The proposed methodology was evaluated using the 
following metrics: F-measure (F-m), sensitivity (SE) and 
specificity (SP), positive predictive value (PPV), false 
positive rate per hour (FPRh), prediction time average 
(aPTime) and standard deviation (sPTime). The performance 
of the algorithm was assessed in each 5-fold CV iteration and 
the average was computed. After repeating this process 20 
times, the average and standard deviation (avg ± std) of the 
aforementioned metrics was evaluated.  

The detection result was considered a true positive (TP) if 
an alarm is generated within the time window corresponding 
to the time between the start of BP fall and the syncope 
episode (BPf window). Otherwise, the detection result was 
considered a false positive (FP). A true negative (TN) was 

assigned if no alarm is generated outside the BPf window, 
whereas a false negative (FN) is considered if alarms are 
generated in this period. The FPRh was defined as the 
number of false positives divided by the sum of all non-BPf 
windows (in hours) of all patients. The PTime was defined as 
the time span between the first alarm and the syncope 
episode. 

A. Feature selection 
The feature selection results are presented in Table III. It 

is observed that the feature presenting the highest FSS refer 
to PAT parameter (nPAT), followed by nSI and nΔSI, related 
to SI. The remaining selected features correspond the 
normalized changes of HR (nΔHR) over a 1.5 minutes 
window and to the change of RI relatively to the reference 
window (nRI). It is also evident that between the 7th and 8th 
features (separated by a thick red line in Table III) there is a 
huge gap in the FSS score (≈11.4%). This performance 
decrease led to the exclusion of the last three features. In 
summary, seven features were selected from a total of ten 
extracted features. Although the best feature (nPAT) 
extracted from the analysis of the PAT parameter present the 
highest FSS, it is worth noting that it presents lower SP 
(90%) and PPV (83.3%), when compared to nSI (SP: 96.7% 
and PPV: 92.3%). Additionally, this feature presents a high 
FPRh (1.7 h-1) when compared to the selected features, and 
particularly nSI (0.81h-1). 

The selected features with the highest prediction time 
(aPTime) also derive from the analysis of SI (nSI: 125.2s), 
followed by nRI (113.2s) and nPAT (101s). The aPTime of 
the remaining features ranges from 60.8s (nΔHR) to 90.2s 
(nΔLVET). 

B. Syncope detection 
The results achieved by the proposed syncope prediction 

algorithm in the training/validation and testing phases are 
presented in Table III (FDval and FDts respectively).  

In the validation phase, the proposed algorithm achieved 
a SE of 89%, associated with high specificity (SP: 96.7%) 
and positive predictive value (PPV: 94.42%). Moreover, the 
number of false positives per hour is low (FPRh: 0.18h-1) and 
a good prediction time was achieved (65.37 ± 40.6s). 

In the testing phase, the proposed algorithm predicted 

 
Figure 4. HUTT of a 69-year-old patient with manifested syncope and 
GTN provocation. Top diagram: SBP (blue) and FD (black) time series 
during HUTT. Bottom diagram: Phases of HUTT. Reference window 
represented as a black bar, corresponds to the second minute of phase 2. 
BPf window is time from the start of BP fall to onset of the syncope. 

TABLE III. PERFORMANCE OF THE EXTRATED FEATURES (FT1,…,10 ),  AND 
THE PROPOSED ALGORITHM IN THE VALIDATION (FDVAL) AND TEST 

(FDTS) PHASES 

Feature Score 
(%) 

SE 
(%) 

SP 
(%) 

PPV 
(%) 

FPRh 
(h-1) 

aPTime 
(s) 

sPTime 
(s) 

nPAT 94.6* 100.0 90.0 83.3 1.7 101.0 85.4 
nSI 89.6* 80.0 96.7 92.3 0.8 125.2 121.3 

nΔHR 75.8* 80.0 86.7 75.0 2.4 60.8 72.3 
nRI 71.0* 86.7 83.3 72.2 2.0 113.2 94.2 

nΔPAT 70.7* 80.0 93.3 85.7 0.8 76.4 143.0 
nΔSI 68.3* 80.0 93.3 85.7 0.3 84.5 84.3 

nΔLVET 67.4* 80.0 73.3 60.0 4.1 90.2 80.6 
nLVET 56.0* 93.3 60.0 53.8 5.2 201.6 130.2 

nHR 49.0* 73.3 90.0 78.6 1.2 77.0 142.7 
nΔRI 35.9* 100.0 10.0 35.7 11.3 206.7 141.8 

FDval‡ 91.8±2† 89±3.3 96.7±0 94.42±0.82 0.18±0.05 65.37±2.6 40.6±5.08 
FDts 92.3† 100 92.3 85.7 0.146 217.58 197.45 

* Feature selection score (FSS). † F-measure (F-m). ‡Average ± standard deviation  
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syncope episodes with a high SE of 100%, without 
compromising both specificity (SP: 92.3%) and positive 
predictive value (PPV: 85.7%). Moreover, the number of 
false positives per hour is low (FPRh: 0.146 h-1) and a good 
prediction time was achieved (PTime: 217.58 ± 197.45s), 
ranging from 62.5 to 569s. The detection of impending 
syncope was always after the onset of the prodomi symptoms 
(from approximately 0.5 to 3 minutes), with exception to 
patient #36, where syncope was predicted before the 
appearance of symptoms. 

An important characteristic of the proposed algorithm is 
the compromise between the high performance, supported by 
the high values of SE, SP and PPV (above 85%), and the low 
false positive rate per hour, in both validation and testing 
phases. Here, an essential improvement could be achieved of 
utmost importance to avoid false alarms limiting the use in p-
health scenarios by mistrust in a monitoring solution. 
Moreover, the observed prediction times can give patients the 
ability to act appropriately, e.g. by performing physical 
counterpressure maneuvers (PCMs). According to [21], the 
effects of PCMs such as hand grip maneuver were evident 
after the first 10s and showed significant BP increases after a 
2 min. Our results suggest that the achieved prediction times 
(ranging from 1 to 9 minutes)  might be helpful in an early 
execution of PCMs and therefore could facilitate the timely 
administration of effective interventions to prevent or delay 
NMS.     

V. CONCLUSIONS AND FUTURE WORK 
In the current paper an algorithm for syncope prediction 

based on the evaluation of chronotropic (HR), inotropic 
(LVET) and vascular tone (SI, RI and PAT) changes is 
presented. The extracted features resulted from the analysis 
of ECG and PPG signals and were combined into a single 
distance measure and a threshold-based approach was used to 
detect NMS. The proposed methodology was trained and 
tested on 43 patients using a three-way data split scheme. Our 
results highlight the potential importance of a combined 
analysis of the extracted parameters in the prediction of 
impending NMS. Additionally, we demonstrate the 
robustness of the algorithm approach against artifacts, which 
might prove to be a key feature in the translation of this 
method in to ambulatory p-health settings. 

Future work will focus on the implementation of a 
classification model such as Support Vector Machine to 
identify patterns during impending syncope combined with a 
threshold-based approach for early NMS detection.  

ACKNOWLEDGMENT 
We thank the medical and nursing staff of the 

Neurocardiology Unit, Division of Cardiology, Pneumology 
and Angiology, University Düsseldorf, for supporting this 
study. We thank especially Sandy Gläser for excellent 
technical support. 

REFERENCES  
[1] A. Moya, R. Sutton, F. Ammirati, J. J. Blanc, M. Brignole, J. B. 

Dahm, et al., "Guidelines for the diagnosis and management of 
syncope (version 2009)," Eur Heart J, vol. 30, pp. 2631-71, Nov 
2009. 

[2] N. Colman, K. Nahm, K. S. Ganzeboom, W. K. Shen, J. Reitsma, M. 
Linzer, et al., "Epidemiology of reflex syncope," Clin Auton Res, vol. 
14 Suppl 1, pp. 9-17, Oct 2004. 

[3] E. S. Soteriades, J. C. Evans, M. G. Larson, M. H. Chen, L. Chen, E. 
J. Benjamin, et al., "Incidence and Prognosis of Syncope," New 
England Journal of Medicine, vol. 347, pp. 878-885, 2002. 

[4] D. M. Lemonick, "Evaluation of Syncope in the Emergency 
Department," American Journal of Clinical Medicine, vol. 7, 2010. 

[5] S. Rosanio, E. R. Schwarz, D. L. Ware, and A. Vitarelli, "Syncope in 
adults: Systematic review and proposal of a diagnostic and therapeutic 
algorithm," International journal of cardiology, vol. 162, pp. 149-157, 
2013. 

[6] B. P. Grubb, "Pathophysiology and differential diagnosis of 
neurocardiogenic syncope," The American Journal of Cardiology, vol. 
84, pp. 3-9, 1999. 

[7] H. Ouyang and J. Quinn, "Diagnosis and Evaluation of Syncope in the 
Emergency Department," Emergency Medicine Clinics of North 
America, vol. 28, pp. 471-485, 8// 2010. 

[8] N. Virag, R. Sutton, R. Vetter, T. Markowitz, and M. Erickson, 
"Prediction of vasovagal syncope from heart rate and blood pressure 
trend and variability: Experience in 1,155 patients," Heart Rhythm, 
vol. 4, pp. 1375-1382, 2007. 

[9] C. Chun-An, C. Hsin, and C. Hung-Wen, "Early detection of 
vasovagal syncope in tilt-up test with hemodynamic and autonomic 
study," in Computing in Cardiology, 2011, 2011, pp. 529-532. 

[10] E. Chung, G. Chen, B. Alexander, and M. Cannesson, "Non-invasive 
continuous blood pressure monitoring: a review of current 
applications," Frontiers of Medicine, vol. 7, pp. 91-101, 2013/03/01 
2013. 

[11] J. Muehlsteff, A. Ritz, T. Drexel, C. Eickholt, P. Carvalho, R. 
Couceiro, et al., "Pulse Arrival Time as surrogate for systolic blood 
pressure changes during impending neurally mediated syncope," in 
Engineering in Medicine and Biology Society (EMBC), 2012 Annual 
International Conference of the IEEE, 2012, pp. 4283-4286. 

[12] C. Meyer, G. Morren, J. Muehlsteff, C. Heiss, T. Lauer, P. Schauerte, 
et al., "Predicting neurally mediated syncope based on pulse arrival 
time: algorithm development and preliminary results," J Cardiovasc 
Electrophysiol, vol. 22, pp. 1042-8, Sep 2011. 

[13] J. Muehlsteff, T. Correia, R. Couceiro, P. Carvalho, A. Ritz, C. 
Eickholt, et al., "Detection of hemodynamic adaptations during 
impending syncope: Implementation of a robust algorithm based on 
pulse arrival time measurements only," Conf Proc IEEE Eng Med Biol 
Soc, vol. 2013, pp. 2291-4, 2013. 

[14] R. Couceiro, P. Carvalho, R. P. Paiva, J. Muehlsteff, J. Henriques, V. 
Schulze, et al., "Characterization of surrogate parameters for blood 
pressure regulation in neurally-mediated syncope," in Engineering in 
Medicine and Biology Society (EMBC), 2013 35th Annual 
International Conference of the IEEE, 2013, pp. 5381-5385. 

[15] Y. Sun, K. Chan, and S. Krishnan, "Characteristic wave detection in 
ECG signal using morphological transform," BMC Cardiovascular 
Disorders, vol. 5, p. 28, 2005. 

[16] R. Couceiro, P. Carvalho, R. P. Paiva, J. Henriques, M. Antunes, I. 
Quintal, et al., "Multi-Gaussian fitting for the assessment of left 
ventricular ejection time from the Photoplethysmogram," in 
EMBC2012, San Diego, 2012. 

[17] M. Baruch, D. Warburton, S. Bredin, A. Cote, D. Gerdt, and C. 
Adkins, "Pulse Decomposition Analysis of the digital arterial pulse 
during hemorrhage simulation," Nonlinear Biomedical Physics, vol. 5, 
p. 1, 2011. 

[18] S. S. DeLoach and R. R. Townsend, "Vascular Stiffness: Its 
Measurement and Significance for Epidemiologic and Outcome 
Studies," Clinical Journal of the American Society of Nephrology, vol. 
3, pp. 184-192, 2008. 

[19] O. Salem, L. Yaning, and A. Mehaoua, "A lightweight anomaly 
detection framework for medical wireless sensor networks," in 
Wireless Communications and Networking Conference (WCNC), 2013 
IEEE, 2013, pp. 4358-4363. 

[20] R. Wang and K. Tang, "Feature Selection for Maximizing the Area 
Under the ROC Curve," in Data Mining Workshops, 2009. ICDMW 
'09. IEEE International Conference on, 2009, pp. 400-405. 

[21] M. Brignole, F. Croci, C. Menozzi, A. Solano, P. Donateo, D. 
Oddone, et al., "Isometric arm counter-pressure maneuvers to abort 
impending vasovagal syncope," Journal of the American College of 
Cardiology, vol. 40, pp. 2053-2059, 12/4/ 2002. 

2956


